跳转至

rocketpi_i2c_aht30

效果展示

aht30

功能说明

面向 RocketPI STM32F401RE 开发板的 AHT30温湿度 演示工程。主要特性:

  • 驱动AHT30在串口上打印温湿度。

  • 提供 driver_aht30 基础驱动。

  • driver_aht30_test 直接调用测试,自主选择轮询时间。

  • soft_i2c 提供通用GPIO bit-bang I2C主机,可复用到其它外设。

  • driver_aht30_config.h 允许在软件/硬件I2C之间切换并集中定义GPIO与时序宏。

软硬件i2c切换

image-20251213015257240

硬件连接

image-20251213015406267

驱动以及测试代码

Core/Src/main.c
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include "driver_aht30_test.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_I2C1_Init();
  MX_USART2_UART_Init();
  /* USER CODE BEGIN 2 */
  printf("Initializing AHT30...\r\n");
  if (aht30_init() != HAL_OK)
  {
    printf("AHT30 init failed\r\n");
  }
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    aht30_test_log_measurement();
    HAL_Delay(1000);
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 84;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
bsp/aht30/driver_aht30.c
#include "driver_aht30.h"

#include "driver_aht30_config.h"

#include <stddef.h>

#if AHT30_USE_SOFT_I2C
#include "soft_i2c.h"
#include "gpio.h"
#else
#include "i2c.h"
#endif

/**
 * @file driver_aht30.c
 * @brief AHT30温湿度传感器的软件/硬件I2C驱动实现。
 */

#define AHT30_CMD_TRIGGER       0xACU
#define AHT30_CMD_CONFIG_0      0x33U
#define AHT30_CMD_CONFIG_1      0x00U
#define AHT30_CMD_RESET         0xBAU
#define AHT30_STATUS_BUSY       0x80U

#if AHT30_USE_SOFT_I2C

typedef struct {
    GPIO_TypeDef *port;
    uint16_t pin;
} aht30_gpio_pin_t;

static soft_i2c_status_t aht30_gpio_write(void *ctx, soft_i2c_pin_state_t state)
{
    aht30_gpio_pin_t *pin = (aht30_gpio_pin_t *)ctx;
    HAL_GPIO_WritePin(pin->port, pin->pin, (state == SOFT_I2C_PIN_SET) ? GPIO_PIN_SET : GPIO_PIN_RESET);
    return SOFT_I2C_STATUS_OK;
}

static soft_i2c_pin_state_t aht30_gpio_read(void *ctx)
{
    aht30_gpio_pin_t *pin = (aht30_gpio_pin_t *)ctx;
    return (HAL_GPIO_ReadPin(pin->port, pin->pin) == GPIO_PIN_SET) ? SOFT_I2C_PIN_SET : SOFT_I2C_PIN_RESET;
}

static aht30_gpio_pin_t s_scl_pin = {AHT30_SOFT_SCL_PORT, AHT30_SOFT_SCL_PIN};
static aht30_gpio_pin_t s_sda_pin = {AHT30_SOFT_SDA_PORT, AHT30_SOFT_SDA_PIN};

static soft_i2c_bus_t s_aht30_bus = {
    .scl = {aht30_gpio_write, aht30_gpio_read, &s_scl_pin},
    .sda = {aht30_gpio_write, aht30_gpio_read, &s_sda_pin},
    .delay_fn = NULL,
    .delay_ctx = NULL,
    .delay_ticks = AHT30_SOFT_DELAY_TICKS,
    .stretch_timeout_ticks = AHT30_SOFT_STRETCH_TICKS,
    .initialized = 0U,
};

static void aht30_soft_gpio_configure(void)
{
    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
    GPIO_InitStruct.Pull = GPIO_PULLUP;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;

    GPIO_InitStruct.Pin = AHT30_SOFT_SCL_PIN;
    HAL_GPIO_Init(AHT30_SOFT_SCL_PORT, &GPIO_InitStruct);
    HAL_GPIO_WritePin(AHT30_SOFT_SCL_PORT, AHT30_SOFT_SCL_PIN, GPIO_PIN_SET);

    GPIO_InitStruct.Pin = AHT30_SOFT_SDA_PIN;
    HAL_GPIO_Init(AHT30_SOFT_SDA_PORT, &GPIO_InitStruct);
    HAL_GPIO_WritePin(AHT30_SOFT_SDA_PORT, AHT30_SOFT_SDA_PIN, GPIO_PIN_SET);
}

static HAL_StatusTypeDef aht30_bus_init(void)
{
    aht30_soft_gpio_configure();
    soft_i2c_status_t status = soft_i2c_bus_init(&s_aht30_bus);
    return (status == SOFT_I2C_STATUS_OK) ? HAL_OK : HAL_ERROR;
}

static HAL_StatusTypeDef aht30_bus_transmit(const uint8_t *data, size_t size)
{
    soft_i2c_status_t status = soft_i2c_master_transmit(&s_aht30_bus, AHT30_I2C_ADDRESS, data, size);
    if (status == SOFT_I2C_STATUS_TIMEOUT) {
        return HAL_TIMEOUT;
    }
    return (status == SOFT_I2C_STATUS_OK) ? HAL_OK : HAL_ERROR;
}

static HAL_StatusTypeDef aht30_bus_receive(uint8_t *data, size_t size)
{
    soft_i2c_status_t status = soft_i2c_master_receive(&s_aht30_bus, AHT30_I2C_ADDRESS, data, size);
    if (status == SOFT_I2C_STATUS_TIMEOUT) {
        return HAL_TIMEOUT;
    }
    return (status == SOFT_I2C_STATUS_OK) ? HAL_OK : HAL_ERROR;
}

#else

static HAL_StatusTypeDef aht30_bus_init(void)
{
    return HAL_OK;
}

static HAL_StatusTypeDef aht30_bus_transmit(const uint8_t *data, size_t size)
{
    return HAL_I2C_Master_Transmit(&AHT30_I2C_HANDLE, AHT30_I2C_ADDRESS, (uint8_t *)data, size, HAL_MAX_DELAY);
}

static HAL_StatusTypeDef aht30_bus_receive(uint8_t *data, size_t size)
{
    return HAL_I2C_Master_Receive(&AHT30_I2C_HANDLE, AHT30_I2C_ADDRESS, data, size, HAL_MAX_DELAY);
}

#endif /* AHT30_USE_SOFT_I2C */

static HAL_StatusTypeDef aht30_soft_reset(void)
{
    uint8_t cmd = AHT30_CMD_RESET;
    return aht30_bus_transmit(&cmd, 1U);
}

static void aht30_convert_samples(const uint8_t raw[6], float *temperature_c, float *humidity_pct)
{
    uint32_t raw_humidity = ((uint32_t)raw[1] << 12)
                          | ((uint32_t)raw[2] << 4)
                          | (uint32_t)(raw[3] >> 4);

    uint32_t raw_temperature = (((uint32_t)raw[3] & 0x0FU) << 16)
                             | ((uint32_t)raw[4] << 8)
                             | (uint32_t)raw[5];

    *humidity_pct = (raw_humidity * 100.0f) / 1048576.0f;
    *temperature_c = (raw_temperature * 200.0f) / 1048576.0f - 50.0f;
}

HAL_StatusTypeDef aht30_init(void)
{
    HAL_StatusTypeDef status = aht30_bus_init();
    if (status != HAL_OK) {
        return status;
    }

    HAL_Delay(AHT30_POWER_ON_DELAY);
    status = aht30_soft_reset();
    HAL_Delay(AHT30_POST_RESET_DELAY);
    return status;
}

HAL_StatusTypeDef aht30_read_raw(uint8_t raw[6])
{
    uint8_t cmd[3] = {AHT30_CMD_TRIGGER, AHT30_CMD_CONFIG_0, AHT30_CMD_CONFIG_1};
    HAL_StatusTypeDef status = aht30_bus_transmit(cmd, sizeof(cmd));
    if (status != HAL_OK) {
        return status;
    }

    HAL_Delay(AHT30_MEASUREMENT_DELAY);
    status = aht30_bus_receive(raw, 6U);
    if (status != HAL_OK) {
        return status;
    }

    if ((raw[0] & AHT30_STATUS_BUSY) != 0U) {
        return HAL_BUSY;
    }

    return HAL_OK;
}

HAL_StatusTypeDef aht30_read(float *temperature_c, float *humidity_pct)
{
    if ((temperature_c == NULL) || (humidity_pct == NULL)) {
        return HAL_ERROR;
    }

    uint8_t raw[6] = {0};
    HAL_StatusTypeDef status = aht30_read_raw(raw);
    if (status != HAL_OK) {
        return status;
    }

    aht30_convert_samples(raw, temperature_c, humidity_pct);
    return HAL_OK;
}
bsp/aht30/driver_aht30.h
#pragma once

#include <stdint.h>

#include "stm32f4xx_hal.h"

/**
 * @file driver_aht30.h
 * @brief AHT30温湿度传感器的软件I2C驱动声明。
 */

#define AHT30_I2C_ADDRESS        (0x38U << 1) /**< 为HAL使用而左移的7位地址。 */
#define AHT30_MEASUREMENT_DELAY  80U          /**< 典型的测量转换延时(毫秒)。 */
#define AHT30_POWER_ON_DELAY     20U          /**< 上电后发送命令前的最小等待时间(毫秒)。 */
#define AHT30_POST_RESET_DELAY   20U          /**< 发出软复位后的等待时间(毫秒)。 */

#ifdef __cplusplus
extern "C" {
#endif

HAL_StatusTypeDef aht30_init(void);
HAL_StatusTypeDef aht30_read_raw(uint8_t raw[6]);
HAL_StatusTypeDef aht30_read(float *temperature_c, float *humidity_pct);

#ifdef __cplusplus
}
#endif
bsp/aht30/driver_aht30_config.h
#pragma once

#include "main.h"

/**
 * @file driver_aht30_config.h
 * @brief 通过宏控制AHT30驱动所使用的I2C实现以及GPIO定义。
 */

#ifndef AHT30_USE_SOFT_I2C
#define AHT30_USE_SOFT_I2C 1 /**< 默认启用软件I2C。设为0可切换回HAL硬件I2C。 */
#endif

#if AHT30_USE_SOFT_I2C

#ifndef AHT30_SOFT_SCL_PORT
#define AHT30_SOFT_SCL_PORT AHT30_SCL_GPIO_Port
#endif

#ifndef AHT30_SOFT_SCL_PIN
#define AHT30_SOFT_SCL_PIN AHT30_SCL_Pin
#endif

#ifndef AHT30_SOFT_SDA_PORT
#define AHT30_SOFT_SDA_PORT AHT30_SDA_GPIO_Port
#endif

#ifndef AHT30_SOFT_SDA_PIN
#define AHT30_SOFT_SDA_PIN AHT30_SDA_Pin
#endif

#ifndef AHT30_SOFT_DELAY_TICKS
#define AHT30_SOFT_DELAY_TICKS 80U
#endif

#ifndef AHT30_SOFT_STRETCH_TICKS
#define AHT30_SOFT_STRETCH_TICKS 8000U
#endif

#else

#include "i2c.h"

#ifndef AHT30_I2C_HANDLE
#define AHT30_I2C_HANDLE hi2c1
#endif

#endif /* AHT30_USE_SOFT_I2C */
bsp/aht30/driver_aht30_test.c
#include "driver_aht30_test.h"

#include <stdio.h>
#include <stdlib.h>

/**
 * @file driver_aht30_test.c
 * @brief AHT30驱动的日志辅助与测量演示。
 * @author rocket
 */

/**
 * @brief 打印带简短前缀的HAL状态码。
 * @param phase 描述失败操作的文本。
 * @param status 驱动返回的HAL状态。
 */
static void aht30_test_print_status(const char *phase, HAL_StatusTypeDef status)
{
    printf("AHT30 %s error (status=%d)\r\n", phase, (int)status);
}

/**
 * @brief 获取一次测量、完成转换并输出可读结果。
 * @return 成功返回HAL_OK,传感器测量中返回HAL_BUSY,失败则返回HAL错误码。
 */
HAL_StatusTypeDef aht30_test_log_measurement(void)
{
    float temperature = 0.0f;
    float humidity = 0.0f;
    HAL_StatusTypeDef status = aht30_read(&temperature, &humidity);
    if (status == HAL_OK) {
        int16_t temp10 = (int16_t)(temperature * 10.0f);
        uint16_t hum10 = (uint16_t)(humidity * 10.0f);
        printf("AHT30 -> T=%d.%01dC  RH=%d.%01d%%\r\n",
               temp10 / 10, abs(temp10 % 10),
               hum10 / 10, hum10 % 10);
    } else if (status == HAL_BUSY) {
        printf("AHT30 measurement busy\r\n");
    } else {
        aht30_test_print_status("read", status);
    }

    return status;
}

/**
 * @brief 读取6字节原始数据并打印,便于调试。
 * @return 成功捕获数据返回HAL_OK,设备仍在测量时返回HAL_BUSY,否则返回HAL错误码。
 */
HAL_StatusTypeDef aht30_test_log_raw(void)
{
    uint8_t raw[6] = {0};
    HAL_StatusTypeDef status = aht30_read_raw(raw);
    if (status == HAL_OK) {
        printf("AHT30 raw -> %02X %02X %02X %02X %02X %02X (cal=%s)\r\n",
               raw[0], raw[1], raw[2], raw[3], raw[4], raw[5],
               ((raw[0] & 0x08U) != 0U) ? "yes" : "no");
    } else if (status == HAL_BUSY) {
        printf("AHT30 raw request busy\r\n");
    } else {
        aht30_test_print_status("raw", status);
    }

    return status;
}
bsp/aht30/driver_aht30_test.h
#pragma once

#include "driver_aht30.h"

/**
 * @file driver_aht30_test.h
 * @brief 用于测试和记录AHT30驱动的辅助函数。
 * @author rocket
 */

#ifdef __cplusplus
extern "C" {
#endif

/**
 * @brief 进行一次测量并通过printf输出转换值。
 * @return 采样有效时返回HAL_OK,传感器仍在测量时返回HAL_BUSY,否则返回HAL错误码。
 */
HAL_StatusTypeDef aht30_test_log_measurement(void);

/**
 * @brief 读取原始帧并输出状态/字节序列以便调试。
 * @return 成功获取原始字节返回HAL_OK,传感器仍在测量时返回HAL_BUSY,否则返回HAL错误码。
 */
HAL_StatusTypeDef aht30_test_log_raw(void);

#ifdef __cplusplus
}
#endif
bsp/soft_i2c/soft_i2c.c
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#include "soft_i2c.h"

#ifndef __NOP
#define __NOP() __asm volatile ("nop")
#endif

static soft_i2c_status_t soft_i2c_prepare_bus(soft_i2c_bus_t *bus);
static void soft_i2c_delay(const soft_i2c_bus_t *bus);
static soft_i2c_status_t soft_i2c_drive_scl(soft_i2c_bus_t *bus, soft_i2c_pin_state_t state);
static soft_i2c_status_t soft_i2c_drive_sda(soft_i2c_bus_t *bus, soft_i2c_pin_state_t state);
static soft_i2c_status_t soft_i2c_start(soft_i2c_bus_t *bus);
static soft_i2c_status_t soft_i2c_repeated_start(soft_i2c_bus_t *bus);
static void soft_i2c_stop(soft_i2c_bus_t *bus);
static soft_i2c_status_t soft_i2c_write_byte(soft_i2c_bus_t *bus, uint8_t value);
static soft_i2c_status_t soft_i2c_read_byte(soft_i2c_bus_t *bus, uint8_t *value, int last_byte);

/* 初始化软I2C总线:确认GPIO操作回调存在并设置默认延时 */
soft_i2c_status_t soft_i2c_bus_init(soft_i2c_bus_t *bus)
{
    if ((bus == NULL) ||
        (bus->scl.write == NULL) || (bus->scl.read == NULL) ||
        (bus->sda.write == NULL) || (bus->sda.read == NULL)) {
        return SOFT_I2C_STATUS_INVALID_PARAM;
    }

    if (bus->delay_ticks == 0U) {
        bus->delay_ticks = SOFT_I2C_DEFAULT_DELAY_TICKS;
    }

    if (bus->stretch_timeout_ticks == 0U) {
        bus->stretch_timeout_ticks = SOFT_I2C_DEFAULT_STRETCH_TICKS;
    }

    soft_i2c_drive_scl(bus, SOFT_I2C_PIN_SET);
    soft_i2c_drive_sda(bus, SOFT_I2C_PIN_SET);

    bus->initialized = 1U;
    return SOFT_I2C_STATUS_OK;
}

/* 执行起始+地址+数据的写入流程,遇到NACK立即停止 */
soft_i2c_status_t soft_i2c_master_transmit(soft_i2c_bus_t *bus, uint8_t address,
                                           const uint8_t *data, size_t size)
{
    if ((data == NULL) && (size > 0U)) {
        return SOFT_I2C_STATUS_INVALID_PARAM;
    }

    soft_i2c_status_t status = soft_i2c_prepare_bus(bus);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }

    int started = 0;
    status = soft_i2c_start(bus);
    if (status != SOFT_I2C_STATUS_OK) {
        goto done;
    }
    started = 1;

    status = soft_i2c_write_byte(bus, address & (uint8_t)~0x01U);
    if (status != SOFT_I2C_STATUS_OK) {
        goto done;
    }

    for (size_t i = 0; i < size; ++i) {
        status = soft_i2c_write_byte(bus, data[i]);
        if (status != SOFT_I2C_STATUS_OK) {
            goto done;
        }
    }

done:
    if (started) {
        soft_i2c_stop(bus);
    }
    return status;
}

/* 仅执行读流程,负责发送最后一个NACK并停止 */
soft_i2c_status_t soft_i2c_master_receive(soft_i2c_bus_t *bus, uint8_t address,
                                          uint8_t *data, size_t size)
{
    if ((data == NULL) && (size > 0U)) {
        return SOFT_I2C_STATUS_INVALID_PARAM;
    }
    if (size == 0U) {
        return SOFT_I2C_STATUS_OK;
    }

    soft_i2c_status_t status = soft_i2c_prepare_bus(bus);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }

    int started = 0;
    status = soft_i2c_start(bus);
    if (status != SOFT_I2C_STATUS_OK) {
        goto done;
    }
    started = 1;

    status = soft_i2c_write_byte(bus, address | 0x01U);
    if (status != SOFT_I2C_STATUS_OK) {
        goto done;
    }

    for (size_t i = 0; i < size; ++i) {
        const int last_byte = (i + 1U) == size;
        status = soft_i2c_read_byte(bus, &data[i], last_byte);
        if (status != SOFT_I2C_STATUS_OK) {
            goto done;
        }
    }

done:
    if (started) {
        soft_i2c_stop(bus);
    }
    return status;
}

/* 先写后读的组合事务,实现典型寄存器访问 */
soft_i2c_status_t soft_i2c_master_write_read(soft_i2c_bus_t *bus, uint8_t address,
                                             const uint8_t *tx_data, size_t tx_size,
                                             uint8_t *rx_data, size_t rx_size)
{
    if (((tx_data == NULL) && (tx_size > 0U)) ||
        ((rx_data == NULL) && (rx_size > 0U))) {
        return SOFT_I2C_STATUS_INVALID_PARAM;
    }

    soft_i2c_status_t status = soft_i2c_prepare_bus(bus);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }

    int started = 0;
    if (tx_size > 0U) {
        status = soft_i2c_start(bus);
        if (status != SOFT_I2C_STATUS_OK) {
            goto cleanup;
        }
        started = 1;

        status = soft_i2c_write_byte(bus, address & (uint8_t)~0x01U);
        if (status != SOFT_I2C_STATUS_OK) {
            goto cleanup;
        }

        for (size_t i = 0; i < tx_size; ++i) {
            status = soft_i2c_write_byte(bus, tx_data[i]);
            if (status != SOFT_I2C_STATUS_OK) {
                goto cleanup;
            }
        }
    }

    if (rx_size > 0U) {
        if (!started) {
            status = soft_i2c_start(bus);
            if (status != SOFT_I2C_STATUS_OK) {
                goto cleanup;
            }
            started = 1;
        } else {
            status = soft_i2c_repeated_start(bus);
            if (status != SOFT_I2C_STATUS_OK) {
                goto cleanup;
            }
        }

        status = soft_i2c_write_byte(bus, address | 0x01U);
        if (status != SOFT_I2C_STATUS_OK) {
            goto cleanup;
        }

        for (size_t i = 0; i < rx_size; ++i) {
            const int last_byte = (i + 1U) == rx_size;
            status = soft_i2c_read_byte(bus, &rx_data[i], last_byte);
            if (status != SOFT_I2C_STATUS_OK) {
                goto cleanup;
            }
        }
    }

cleanup:
    if (started) {
        soft_i2c_stop(bus);
    }
    return status;
}

/* 确保总线已经初始化,必要时报错 */
static soft_i2c_status_t soft_i2c_prepare_bus(soft_i2c_bus_t *bus)
{
    if (bus == NULL) {
        return SOFT_I2C_STATUS_INVALID_PARAM;
    }

    if (bus->initialized == 0U) {
        return soft_i2c_bus_init(bus);
    }

    return SOFT_I2C_STATUS_OK;
}

/* 根据配置执行半周期延时,可自定义回调或默认NOP循环 */
static void soft_i2c_delay(const soft_i2c_bus_t *bus)
{
    if ((bus != NULL) && (bus->delay_fn != NULL)) {
        bus->delay_fn(bus->delay_ticks, bus->delay_ctx);
        return;
    }

    uint32_t ticks = (bus == NULL || bus->delay_ticks == 0U) ? SOFT_I2C_DEFAULT_DELAY_TICKS : bus->delay_ticks;
    for (volatile uint32_t i = 0; i < ticks; ++i) {
        __NOP();
    }
}

/* 设置SCL电平并处理clock stretching */
static soft_i2c_status_t soft_i2c_drive_scl(soft_i2c_bus_t *bus, soft_i2c_pin_state_t state)
{
    soft_i2c_status_t status = bus->scl.write(bus->scl.ctx, state);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }

    if (state == SOFT_I2C_PIN_SET) {
        uint32_t timeout = (bus->stretch_timeout_ticks == 0U)
                               ? SOFT_I2C_DEFAULT_STRETCH_TICKS
                               : bus->stretch_timeout_ticks;
        while (bus->scl.read(bus->scl.ctx) == SOFT_I2C_PIN_RESET) {
            if (timeout-- == 0U) {
                return SOFT_I2C_STATUS_TIMEOUT;
            }
        }
    }

    return SOFT_I2C_STATUS_OK;
}

/* 设置SDA电平 */
static soft_i2c_status_t soft_i2c_drive_sda(soft_i2c_bus_t *bus, soft_i2c_pin_state_t state)
{
    return bus->sda.write(bus->sda.ctx, state);
}

/* 产生I2C起始条件 */
static soft_i2c_status_t soft_i2c_start(soft_i2c_bus_t *bus)
{
    soft_i2c_status_t status = soft_i2c_drive_sda(bus, SOFT_I2C_PIN_SET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }

    status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_SET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    status = soft_i2c_drive_sda(bus, SOFT_I2C_PIN_RESET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_RESET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    return SOFT_I2C_STATUS_OK;
}

/* 产生重复起始条件,用于读写切换 */
static soft_i2c_status_t soft_i2c_repeated_start(soft_i2c_bus_t *bus)
{
    soft_i2c_status_t status = soft_i2c_drive_sda(bus, SOFT_I2C_PIN_SET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_SET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    status = soft_i2c_drive_sda(bus, SOFT_I2C_PIN_RESET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_RESET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    return SOFT_I2C_STATUS_OK;
}

/* 产生停止条件,将总线释放到空闲 */
static void soft_i2c_stop(soft_i2c_bus_t *bus)
{
    soft_i2c_drive_sda(bus, SOFT_I2C_PIN_RESET);
    soft_i2c_delay(bus);
    soft_i2c_drive_scl(bus, SOFT_I2C_PIN_SET);
    soft_i2c_delay(bus);
    soft_i2c_drive_sda(bus, SOFT_I2C_PIN_SET);
    soft_i2c_delay(bus);
}

/* 写入单字节并读取对方ACK */
static soft_i2c_status_t soft_i2c_write_byte(soft_i2c_bus_t *bus, uint8_t value)
{
    for (int8_t bit = 7; bit >= 0; --bit) {
        soft_i2c_pin_state_t state = ((value >> bit) & 0x01U) ? SOFT_I2C_PIN_SET : SOFT_I2C_PIN_RESET;
        soft_i2c_status_t status = soft_i2c_drive_sda(bus, state);
        if (status != SOFT_I2C_STATUS_OK) {
            return status;
        }
        soft_i2c_delay(bus);

        status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_SET);
        if (status != SOFT_I2C_STATUS_OK) {
            return status;
        }
        soft_i2c_delay(bus);

        status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_RESET);
        if (status != SOFT_I2C_STATUS_OK) {
            return status;
        }
        soft_i2c_delay(bus);
    }

    soft_i2c_status_t status = soft_i2c_drive_sda(bus, SOFT_I2C_PIN_SET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_SET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    soft_i2c_pin_state_t ack = bus->sda.read(bus->sda.ctx);

    status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_RESET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    return (ack == SOFT_I2C_PIN_RESET) ? SOFT_I2C_STATUS_OK : SOFT_I2C_STATUS_ERROR;
}

/* 读取单字节,并根据last_byte决定发送ACK或NACK */
static soft_i2c_status_t soft_i2c_read_byte(soft_i2c_bus_t *bus, uint8_t *value, int last_byte)
{
    uint8_t result = 0U;
    soft_i2c_status_t status = soft_i2c_drive_sda(bus, SOFT_I2C_PIN_SET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }

    for (int8_t bit = 7; bit >= 0; --bit) {
        status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_SET);
        if (status != SOFT_I2C_STATUS_OK) {
            return status;
        }
        soft_i2c_delay(bus);

        if (bus->sda.read(bus->sda.ctx) == SOFT_I2C_PIN_SET) {
            result |= (uint8_t)(1U << bit);
        }

        status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_RESET);
        if (status != SOFT_I2C_STATUS_OK) {
            return status;
        }
        soft_i2c_delay(bus);
    }

    status = soft_i2c_drive_sda(bus, last_byte ? SOFT_I2C_PIN_SET : SOFT_I2C_PIN_RESET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_SET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    status = soft_i2c_drive_scl(bus, SOFT_I2C_PIN_RESET);
    if (status != SOFT_I2C_STATUS_OK) {
        return status;
    }
    soft_i2c_delay(bus);

    soft_i2c_drive_sda(bus, SOFT_I2C_PIN_SET);

    if (value != NULL) {
        *value = result;
    }

    return SOFT_I2C_STATUS_OK;
}
bsp/soft_i2c/soft_i2c.h
#pragma once

#include <stddef.h>
#include <stdint.h>

/**
 * @file soft_i2c.h
 * @brief 通用软件I2C主机接口定义,与具体平台解耦。
 */

#define SOFT_I2C_DEFAULT_DELAY_TICKS      64U
#define SOFT_I2C_DEFAULT_STRETCH_TICKS  4000U

#ifdef __cplusplus
extern "C" {
#endif

typedef enum {
    SOFT_I2C_STATUS_OK = 0,
    SOFT_I2C_STATUS_ERROR = 1,
    SOFT_I2C_STATUS_TIMEOUT = 2,
    SOFT_I2C_STATUS_INVALID_PARAM = 3
} soft_i2c_status_t;

typedef enum {
    SOFT_I2C_PIN_RESET = 0,
    SOFT_I2C_PIN_SET = 1
} soft_i2c_pin_state_t;

typedef soft_i2c_status_t (*soft_i2c_pin_write_fn)(void *ctx, soft_i2c_pin_state_t state);
typedef soft_i2c_pin_state_t (*soft_i2c_pin_read_fn)(void *ctx);
typedef void (*soft_i2c_delay_fn)(uint32_t ticks, void *ctx);

typedef struct {
    soft_i2c_pin_write_fn write;
    soft_i2c_pin_read_fn read;
    void *ctx;
} soft_i2c_pin_io_t;

typedef struct {
    soft_i2c_pin_io_t scl;
    soft_i2c_pin_io_t sda;
    soft_i2c_delay_fn delay_fn;
    void *delay_ctx;
    uint32_t delay_ticks;
    uint32_t stretch_timeout_ticks;
    uint8_t initialized;
} soft_i2c_bus_t;

/** 初始化总线结构体并拉高SCL/SDA,准备进入空闲状态。 */
soft_i2c_status_t soft_i2c_bus_init(soft_i2c_bus_t *bus);

/** 发送一帧起始+写数据,若任何字节NACK则返回错误。 */
soft_i2c_status_t soft_i2c_master_transmit(soft_i2c_bus_t *bus, uint8_t address,
                                           const uint8_t *data, size_t size);

/** 发送起始后进入读模式,并根据长度自动发送ACK/NACK。 */
soft_i2c_status_t soft_i2c_master_receive(soft_i2c_bus_t *bus, uint8_t address,
                                          uint8_t *data, size_t size);

/** 常见的先写后读组合操作,可用于寄存器访问。 */
soft_i2c_status_t soft_i2c_master_write_read(soft_i2c_bus_t *bus, uint8_t address,
                                             const uint8_t *tx_data, size_t tx_size,
                                             uint8_t *rx_data, size_t rx_size);

#ifdef __cplusplus
}
#endif